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A COMPARISON OF TWO MODEL~-DISCRIMINATION CRITERIA

by Duane Meeter, Walter Pirie, and William Blot

0. Summary

Within the last few years there has been increased research
involving a generalization of sequential analysis problems in which the
experimenter is allowed to design his experiment sequentially. Two

different approaches to this Sequential Design of Experiments or Model

Discrimination problem have been made by Chernoff [4] and Box amd Hill {31.

This paper compares the two approaches through examples. Some minor
modifications of Chernoff's procedures are shown to lead to improved

results,

1. Background

Chernoff's results were obtained by letting the cost of sampling
approach zero, in effect allowing large samples. The choice of experiments
depends on Kullback information numbers and the assumption that the
current estimate for the state of nature (the true model) is the correct
one. Chernoff’'s results were obtained for two possible terminal decisions
(actions), and a finite number of states of nature and choices of experi-
ments. They have been extended to an infinite number of_states of nature
by Albert [1] and to k actions and an infinite choice of experiments by
Bessler [2]. We summarize Chernoff's results briefly.

Let f(y,8,e) be the probability density of the outcome of experiment
e when 6 is assumed to be the state of nature. (For different 6 the
density f may assume different functional forms.) The information about Bj
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in experiment e when 6i is assumed true is

f(yyei,e)

1(6;.85.e) = Jl"g £(y,0,,¢)

f(y,ei,e)dy.

Let LA be the set of all & such that sure knowledge that 6 ¢ W, would imply
that the experimenter should take action a; > i=1,...,k, and let d(8) be
the set of all v, except the v, containing 6. Let én be the maximum
likelihood estimate of 6 after n observations, and let én be the maximum

likelihood estimate restricted to the set d(@n). Let

(n)

zn(ei’ej) = lOg[f(yn,ei,e )/f(yn’ej’e(n))]’

(n)

where e is the experiment selected for the nth observation, v, the

outcome of the nth experiment. Chernoff's procedure A is as follows:

Stop sampling at the nth observation and select the hypothesis of
n

6 if ¥ zi(@n,én) > ~log ¢, where c is the cost of an observation.

n i=1
Otherwise, let e(n+l) =

e(én), where e(eo) is the maximin strategy of the

second player (Experimenter) in a game with Nature in which the pavoff to

the Experimenter when Nature is using strategy ¢, the true state of Nature

is 60, and the Experimenter is using strategy e, is

I(8y,4,€)
The value of the game is
1(8y) = inf¢€d(eo)1(60,¢,e(eo)).

We are allowing the possibility that both Nature and the Experimenter may

(nt+1)

use randomized strategies. Note that the definition of e says that
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at each stage we will assume that the hypothesis with the highest likeli-
hood is the true state of nature, and use maximin strategy developed under
that assumption. The intention is, of course, to design experiments such
that after a number of observations have been taken én = 60 with high
probability.

Designing sequential experiments using information numbers makes
intuitive sense. The information I(Gl,ez,e) is the expected value of the
amount by which the logarithm of the likelihood ratio for testing 91 VS,

62 will increase if 91 is true, and experiment e is used. Large information
numbers imply the stopping criterion (-log c¢) will be achieved sooner.
Simply maximizing information numbers may not be wise, however, since Nature
can choose a different strategy (from among alternative hypotheses). In

order to accept hypothesis £, we must reject all competing hypotheses. An

1
experiment good for rejecting one alternative hypothesis may be poor for
another. Theorem 2 among the following results justifies (as least as

c > 0) procedure A, Under mild restrictions, some of which can be relaxed

(see Bessler [2], e.g.) Chernoff has shown for procedure A:

Lemma 1. Let the stopping rule be disregarded. Let T be the smallest

integer such that @n =8 forn >T. Then there exist b, and b, > 0 such

1 2

: 0
-b 211

that Pr{T>n} < b.,e .

1

Lemma 2. The expected sample size satisfies, as ¢ > 0,

E(N) < -[1 + o(1) ]1log c/I(GO).

Lemma 3. The probability of error (i.e. of accepting the hypothesis that

Sl

8y € 4(8)) is a = 0(c).
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Theorem 1. The risk function R(8) satisfies R(8) < -[1 + o(1)]c log c/I1(6).

Theorem 2. Any procedure for which I(6) > 0 and R(8) = O(~-c log c) for

all 9 satisfies

R(8) > ~-[1 + 0(1)]c log c/I(8) for all 6.

Chernoff has termed procedure A asymptotically optimal in the sense
that if another procedure has risk substantially smaller than procedure A
for any 6 then its risk will be of a greater order of magnitude for some
other value of 6, this argument applying as ¢ > o. However in view of
the statement of the Theorem a better term might be asymptotically
admissible.

The approach of Box and Hill [4] begins, on the other hand, with
k hypotheses or models symbolized by el,.,.,ek and the concept of entropy,

k
measured by - Z P; log P> where P is the probability that hypothesis Bi

i=

is true. Maximim entropy occurs when p; = 1/k, i = 1,...,k; the

information about the hypotheses is at a minimum. Minimum entropy (greatest

information) occurs as the probability of one of the hypotheses approaches

one. Before the (n+1)St observation is taken the entropy is - Z pnilog Phi®
i=1

where Pi is the posterior probability that ei is true after n observations

have been made. Box and Hill seek to maximize the difference
R = entropy at input - expected entropy at output

where input and output refer to before and after the taking of observation
ntl. Instead of working with R which involves a difficult integral, they
use an upper bound D for R which reduces to

Kk
D=} )opp

421 ghini ng /s 108(E;/£)dy + [£ log(f,/£,)dy]
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where fi stands for f(y,ei,e), the density of y under hypothesis Si and
experiment e. We immediately recognize the expression in square brackets
as I(ei,ej,e) + I(ej,ei,e) which is Kullback's [6] measure of divergence.
Thus D is a weighted measure of divergence for discriminating between all
possible pairings of the n hypotheses, the weights being the products of
the posterior probabilities of the hypotheses after n observations. This
criterion can be expressed in another way. If we knew that hypothesis ei
was true, and wanted to maximize information about Bj, j#i, in the absence
of any knowledge except the magnitude of the Pnj about which altermative
ej would be most difficult to discriminate against we might try to

maxinmize

j;ipnjl(ei’ ej ,e).

However since we assumed that ei was true when in fact its posterior
probability is Phi? it is natural to multiply the above expression by
P and sum over 1 = 1,...,k, yielding D.

We note three things about this criterion. One is that it seems
strange to maximize an upper bound to the expected change in entropy
rather than a lower bound. (The bound is based on the inequality
anj log fj j_log(anjfj) so that it will tend to sharpen as one hypothesis
gttains high probaﬁility.) The other is that this criterion may tend to
pick out experiments that yield high information even though they
correspond to hypotheses with low probabilities. That is, it may happen
that the behavior of D may be dominated by pnipni,[I(Si,ei,,e) + I(ei,,ei,e)]
where PoiPni- is relatively small and the expression in square brackets is
relatively large. Thus we may be led to experiments which yield large

amounts of information about hypotheses which are already close to being
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ruled out by the previous data. Finally, if k=2, D = pnlpnz[l(el,ez,e)
+ 1(92,el,e)], so that maximizing D results in the same choice of
experiments whether P,; OF P,» is near one, whereas maximizing I(el,ez,e)
may yield quite different choices of experiments than maximizing I(ez,el,e).

On the other hand, the Chernoff procedure uses a maximin strategy
appropriate if the maximum likelihood estimate 1is the state of nature.
This may lead to "initial bungling", since, in Chernoff's words, "At first
it is desirable to apply experiments which are informative for a broad
range of parameter values. Maximizing the Kullback-Liebler information
number may give experiments which are efficient only when 6 is close to
the estimated value." Another question is, how small does ¢ have for the
asymptotic properties to assert themselves? At this point, it seems
appropriate to examine these two procedures by means of examples. The

first two examples are from Bessler [2].

2., Examples

Example 1. Choosing the unusual coin out of a set of k coinms.

Let the probability that say coin number 1 yields heads be yp,
whereas for the other k-1 coins it is p, where y and p are known and are
not equal to 1. Let ei, i=1,...,k, be the hypothesis that coin i is
the "odd" coin. The k possible experiments are e i=1,...,k, to take
an observation from coin i, and the k actions are to accept the hypothesis
6=6i. Letting I(ei’ej’eﬂ) = Iij(eﬂ) denote the information obtained by

ez about ej when ei is assumed true,
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In{y P (1~yp) /(1-p) 1T P}  if £=i

Iij (eﬂ) = a =
= b = ly PLA-p)/(1~vyp) PP} 1f £=j
=0 otherwise.

Without loss of generality, it can be assumed that after n observations

have been taken the estimate én of the hypotheses ei is equal to © The

1
same argument holds with a relabeling of e's and 6's if 8 # 61. The payoff

matrix is shown below.

Strategy of Player 1I

(Experimenter)
e, e, e, . . . . e

62 a b O . . . . 0

Strategy 63 a 0 b 0 . . . 0
of Player I 64 a 0 0 b *
(Nature) R : :
. . . . . 0

ek a 0 O . . . 0 b

If Nature chooses strategy ei, i=2,...,k with probability 1/k-~1 then the

Experimenter's winnings are limited to
max (a,b/k-1).
The Experimenter's maximin strategy depends on a, b, and k.

Case I. If a >.b/k-1, then the Experimenter's maximin strategy is to

choose el with probability 1 and the value of the game is



1(91) = a,

Case II. If a < b/k-1, the Experimenter's maximin strategy is to choose

e i=2,...,k with probability 1/k-1 and the value of the game is

i’

I(el) = b/k-1.

For this example it is also possible to predict what the Box-Hill

procedure will do. For experiment ep

]

Iij(ge) + Iji(el) atb 1if £ =1 or j

0 otherwise,

so that

D(e,) = (atbdp_, ) p
£ ol j#ﬂ'nj

W

(a'*'b)Pnl(l‘Pn‘e) .

Maximizing D is equivalent to minimizing Ipnz - 1/2| which, if k>2, is
equivalent to the rule “choose the coin with the largest likelihood (or
posterior probability)"f. If k=2 then D(el) = D(ez) so no decision ig
possible. 1In this case, we made an arbitrary decision to :andomize
between ey and e,. This procedure yields (atb)/2 units of inforgation
whereas the Chernoff procedure should yield max(a,b) units of information.
For k>2, if a > b/k-1 the Box-Hill and Chernoff procedures are identical
whereas if a < b/k~1, Nature can plan any strategy and the Experimenter
will be limited to a payoff of a units. Following Bessler, we might say

therefore that the (asymptotic) efficlency of the Box-Hill procedure

relative to Chernoff's is

*In each of the three examples in this paper, we have assumed equal prior
probabilities 1/k for each state of nature, ei, i=1,...,k, where requiredf
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E=1 if k2, a > b/k-1

a/(b/k~1) if k»2, a < b/k-1

ff

(a+b) /2 max(a,b) if k=2,

in the sense that (referring to Lemma 2 and Theorem 1) we might expect
that, for sufficiently small cost c of a single observation, the above
ratio would approach the ratio of risks or of average sample numbers for
the two procedures. Values of a, b, and k such that the Box-Hill procedure
would be expected to be at a disadvantage occur only when y is not too
close to 1 and k is small. For example, see Table 1, By symmetry, the

efficiencies hold also for p” = 1-p, vy'p” = 1l-yp.

Table 1. Predicted Efficiency of Box-Hill Procedure for Case II.

k=2 k=3
.9 .9 .5 3 1 .1 vl]{ .05 .05 .01 .01
.5 .1 .5 .1 .5 .1 pll «5 .1 +D .1
Ejl .998 .98 .95 .90 .80 .75 El .99 .81 .68 .54

In Case 1I, it is possible to modify Chernoff's procedure yielding
an improved procedure asymptotically equivalent to A which we will call
procedure A: choose that coin corresponding to 5, the maximum likelihood
hypothesis among the alternatives to 8. Clearly, for large samples, 6
will be ei, i=2,...,k with approximately equal frequency so that its
asymptotic properties should be the same as that of A. If b>a, this is
essentially the same procedure described in Chernoff [4] as: Player 2
(Experimenter) selects e for observation nt+l as though Nature is going to
use that strategy which repeated n times would have been most effective

against the combination of the past choices of the Experimenter.
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Table 2. Results of a Simulation for Case 1I, Example 1.
y=.1 p=,3 k=2 I=.462 -log c¢/I=9.9
__ Standard Range Empirical |Predicted
Procedure N Deviation of N Efficiency [Efficiency
A 13.8 £ 1.0 9.6 2-51 - 1.0
Box~Hill 14.5 = 1.0 9.7 2~57 .95 .77
¥=.5 p=.5 k=2 1I=.144 -log c/I=31.9
_ Standard Range Empirical [Predicted
Procedure N - Deviation of N Efficiency |Efficiency
A 34.7 £ 2.3 22.8 10-111 - 1.0
Box-Hill 35.6 + 2,2 22.5 10-120 .97 .95
¥=.05 p=.05 k=3 I=.052 -log c/I=88.9
- Standard Range Empirical |[Predicted
Procedure N Deviation of N Efficiency |Efficiency
A 201-% 13.8 138.2 28-614 - 1.0
Box~Hill 140 + 5,0 50.3 95-322 1.44 .80
A 115 + 6.9 68.8 18-386 1.75 1.0

Procedure A would not be expected to perform well in Case I, since

(asymptotically) selecting Gi, i=2,...,k with equal frequency would .

yield b/k-1 units of information against Nature's best strategy, while
selecting the coin corresponding to & should yield at least a units of

information against any strategy of Nature. In Table 2 we have listed

some results of simulations of procedures A, A, and that of Box and Hill

for combinations of y, p and k leading to Case II.
n

criterion for termination was z zi(en,én) > ~log c, with c =
i=1

the likelihood of én relative to én had to exceed 99/1. The quantity

In each case, the

1/99, i.e.,

~log c¢/I is the approximation to the average sample number for procedure A
given by Lemma 2. One hundred simulation runs were made for each row of

the table; beside each N is an estimate of its standard error. Interest-
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ingly, in none of the seven hundred runs represented in this table was
the true hypothesis rejected.

We immediately notice several things about this table. First, the
Box~Hill procedure is probably not as inefficient as Table 1 would suggest
and in fact is quite superior to A for the k=3 example. Procedure A on
the other hand is an even greater improvement and the ratio of its
empirical Average Sample Number (ASN) to that of the Box—~Hill procedure
(115/140 = .82) is very close to the efficiency predicted for Box-Hill
relative to Chernoff's procedure A. There is some suggestion that the
approximation ~log c/I to the ASN is not as good for larger values of k.
To explore this further, another simulation was made, this time for Case I
(a > b/k~1), with y=.9, p=.5, so that a=,005008, b=.0050025. Fifty runs
were made for k=3, 6, and 12. The Box-Hill and Chernoff procedures give
identical results for Case I, but we compared their procedures instead to
the "no design" procedure which merely takes k observations, one on each
coin, between each likelihood ratio test. (What was actually done in the
simulation was to randomly choose a coin for each observation and test
after each observation, which should give fairly similar results.) It is
easy to see that Nature can hold this strategy to a gain of (atb)/k units
of information per observation while the maximin strategy can yield a
units of information. The results are shown in Table 3.

It is evident that the approximation to the ASN bréaks down with
increasing k. This is because an increasingly greater part of the sample
is taken up with trying each of the coins a sufficient number of times
until the odd coin establishes a considerable lead. Once this happens the

remainder of the observations are taken on a single coin.
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Table 3. Results of a Simulation for Case I, Example 1.
¥=.9 p=.5 I1=.005008 ¢=1/99 -~log ¢/I=918
= Standard Range Empirical | Predicted
Procedure N Deviation of N Efficiency| Efficiency
A 1,518£135 953 234~5,086 - 1.
k=3 tuNo Design" ||2,695¢125 881 1462-5,416 .563 .67
A 2,713+180 1,273 677-5,953 - i.
=6 "No Design" ||8,8962304 2,150 5463-14,725 .305 .333
A 6,060+508 3,589 1360~19,649 - 1.
k=12
“"No Design' {{24,206%771 5,451 16J112-38,303 .25 .17

in favor of non-design sequential

The predicted efficiencies

is available.

resulted in accepting the wrong hypothesis.

As in the previous

are fairly accurate, and do not say much
experiments when a choice of experiments
simulation, none of the 300 runs

We now take up an example

involving normal populations.

Example 2. Identifving three normal populations with known means and

common known variance.

Suppose that Ty oo and "4 are three normal populations with known
means (ul,uz,u3) respectively and known common variance 02. Suppose
My > My > Mg The following six permutations of (ul,uz,u3) represent the

six possible hypotheses that the experimenter can accept:

6, = (ul,uz,u3)
8, = (“1’“3’”2)
05 = (uysuy5ug)
4 = (ugougsuy)
5 = (ugsuysu,y)

66 = (1133112’111) .
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The three possible experiments e, are to select an observation from popula-
tion LA i=1,2,3., The maximin strategies computed by Bessler depend on

q=b/a, where

The information in observations from normal populations about hypotheses

say H” and H”~ differing only in the specification of the mean is

P o, 2
= & -21_4 )|
20

P

where u” and yu”~ are the means specified in the two hypotheses. The payoff

matrix for the Experimenter's game with Nature is given below, assuming
without loss of generality that 61

j#1, then we just interchange the strategies for playing ey ey and e,

is the hypothesis of o (1f en = Gj,

1 to ej.)

to correspond to the interchanges of (ul,uz,u3) in going from @

Experimenter's Strategy

! ) 3
6, 0 b2/2 b2 /2
o,| a’f2 a%/2 0
Nature's 94 a2/2 b2/2 (a+b)2/2.
Strategy 95 (a+b)2/2 32/2 b2/2
o,| @iz o (atb)2/2

Let A = (Al,AZ,AB) be the probabilities for a randomized strategy

(for the Experimenter) over e ., e, and e_,. There are three cases to the

1’ "2 3
maximin strategy. Let u = (1+q)2, s = 1/(l+q2)
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Case 1. o/ (ul) < > < uf(u-1) (.883 < q < 1.132)

A

{1 - 2su/(u-s+1), u - (1~s)/(u-s+1), 1 ~ 2u(l-s)/(u=-s+l1)]

gi[ 2 |
211 + 1/¢% + 1742

e
1]

Case II.  q° » u/(u-1) (q > 1.132)

A= (Al,l—xl,O)

where

V) <a <1 - /o

M
I= a2/2.

Case III. q° < u/(utl) (q < .883)

A= (o,l—x3,x3)
where
5.1~q2.

?/+)? <,

Table 4 shows the results of some simulation experiments for Case
II. Two hundred runs were made for each set of experimental conditions.
Using the criterion of a 99/1 likelihood ratio for the hypotheszes with the
largest likelihoods, the true hypothesis was rejected 34 times in the
3034 runs. (Runs accepting the wrong hypothesis were not included in the

figures in the table.) Procedure A was used in two ways. Procedure Al

used Al =1 - 1/q2, the upper bound. This can be seen to.be definitely

inferior to the Box-~Hill procedure for the two cases tried, q = V2 and

q=4. Now Nature's minimax strategy for Case II is the pure strategy 63.

However, occasionally Nature ignores her own best interests and plays 62

or 66. Strategies 64 and 9. are not often used since they are both

5

dominated by 63. Procedure A, selects A

2 to equalize the information

1
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Table 4. Results of a Simulation for Case II, Example 2.
b=v2/2 a=1/2 q=/2 1=.125 c¢=1/99 -log c¢/I=36.8
Theoretical lM Empirical
_ Std. | Range [Mixed Strategy [Mixed Strategy
Procedure || Exrrors N Dev. |of N (Al,Az,AB) (Al, 9 3)
A1 2 160.2 £ 1.825.81{22-170 (.50,.50,0) (.48,.44,.08)
A2 49.3 + 1.3 119.0 ] 22-131 (.26,.74,0) (.31,.59,.10)
Box~Hill 3 159.9 £ 1.6 ]22,5]23-149 - (.27,.59,.14)
b=y2/4 _a=1/4 q=/2 1=.03125 c=1/99 -log c/I=147
Theoretical Empirical
_ Std. | Range |Mixed Strategy [Mixed Strategy
Procedure || Exrors N Dev. |of N '(11,12,A3)' (Xl’iz’i3)
A1 2 229 + 6.7 | 94.6 | 89-669 (.50,.50,0) (.48,.44,.08)
A2 190 + 6.4 | 90.9 | 81-705 (.26,.74,0) (.32,.59,.09)
Box-Hill 2 191 + 6.8 96.7 | 85~674 - (.28,.62,.10)
b=/2/8 a=1/8 q=v/2 1=,0078125 c=1/99 -log c/I=588
Theoretical Empirical
. Std. | Range |Mixed Strategy [Mixed Strategy
Procedure || Errors N Dev. | of N (Al,AZ,AB) (Al,k oY )
Al 853 + 24.5| 346 |373-2298] (.50,.50,0) (.49,.45,.06)
A2 2 | 794 £ 25.0 | 353 |357-2001| (.26,.74,0) (.32,.60,.08)
Box-Hill 3 | 746 + 23.5| 333 |342-2219 - (.26,.61,,13)
b=1 a=1/4 q=4 1=,03125 ¢=1/99 -log c/I=147
Theoretical Empirical
- Std. | Range |[Mixed Strategy {[Mixed Strategy
Procedure || Errors N Dev. | of N (Al,xg,h3) (Al, 95 3)
Al 1 {188+ 6.5] 92 | 53-617 {(15/16,1/16,0) (.77,.21,.02)
A2 153 + 6.6 93 | 41-525 (.39,.61,0) (.43,.55,.02)
Box~Hill 156 £+ 7.1 100 | 43-606 - (.42,.54,.04)
b=1/2 a=1/8 q=4 I=.0078125 c¢=1/99 -log c/I=588
Theoretical Empirical
. Std. | Range |Mixed Strategy Mixed Strategy
Procedure || Exrors N Dev.| of N (Al, 2, ) (Al,AZ,AB)
Al 4 1727 +25.8] 365 |147-2246((15/16,1/16,0) (.80,.19,.01)
A2 569 *20.5| 290 {142-1565} (.39,.61,0 (.42,.56,.02)
Box~-Hill 1 | 615 +25.5] 361 [161-1839 - (.41,.55,.04)
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coming from e when Nature uses 66 with the information coming from e,

when Nature uses 62, namely A, = 1/(1+(a+b)2/b2). It can be seen from the

1

table that A, is as good as the Box-Hill procedure, while still being

2
maximin. The "empirical mixed strategy" listed in the table is the proportion
of times each of the three populations was selected over 200 simulations.

The actual frequencies varied from run to run, particularly for the Box-~

Hill method, depending on which hypotheses had the highest probabilities.

A final run was made simulating the Case I situation, with g=1.

The results are shown in Table 5.

Table 5. Results of a Simulation for Case I, Example 2.

b=1/2 a=1/2 q=1 I=1/9 ¢=1/99 -log c/I=41.4

Theoretical Empirical
N Std.| Range [Mixed Strategy (Mixed Strategy

Procedure jErrors I} Dev.j of N (Al,Ag,AB) (Al,AZ,AB)
A 3 64,9 £ 1.8 |25.6] 29-161 (.11,.78,.11) (.21,.61,.18)
Box~-Hill 1 63.7 £ 1.7 |23.6f 29-163 - (.20,.61,.19)

b=1/4 a=1/4 q=1 I=1/36 ¢=1/99 -log c/I=165

Theoretical Empirical
_ Std.| Range |Mixed Strategy [Mixed Strategy

Procedure [[Errors N Dev.| of N (Al,AZ,XB) (Al,xz,AB)
A 1 266 + 8.1 {114 [100-778 (.11,.78,.11) (.21,.58,.21)
Box-Hill 2 230 = 5,5 | 77 |117-507 - (.18,.62,.20)

b=1/8 a=1/8 q=1 I=1/144 c=1/99 -log c/I=662

Theoretical Empirical
— Std.| Range |Mixed Strategy |Mixed Strategy

Procedure || Exrrors N Dev.| of N (Al,xz,AB) (Al,kz,k3)
A 5 1084 + 31.5| 445 |434-2916) (.11,.78,.11) (.22,.57,.21)
Box-Hill | © 918 + 23.9|338 |473-2004 - (.21,.62,.17)
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For Case I, q=1, the maximin strategy is A = (1/9,7/9,1/9). The
true hypothesis was rejected in 12 of 1212 simulations in this table., The
Box-Hill procedure is clearly superior. Note that the asymptotic optima-
lity of Chernoff's procedure A is proved for sufficiently small ¢, not for
large n, so that we cannot necessarily expect procedure A to exhibit its
optimality even for these large samples without decreasing c from the 1/99

used in the examples presented.

Example 3. Distinguishing an exponential from polynomial models.

Consider the following regression hypothesegs:

6,2 Ely) = B yx

6,0 E(¥) = B,y t+ Byy%

030 B(Y) = By + Bayx + Bygx
8,° E(y) = B,x t 842x2

65: E(y) = Bsy exp(sszx)

Here our hypotheses are not points but actually sets in a multidimensional
parameter space. A more precise description would state all of the
hypotheses as special cases of the model E(y) = BO + le + Bzxz + 63 exp(BAX).
We add the assumption that the observations y are normally distributed about
E(y) for the true model with mean zero and variance 02. Box and Hill have
derived an expression for the probability density of a future observation
Yo+l given n previous observations and locally uniform prior distributions
for the unknown parameters, and assuming that non-linear models are
approximately linear near the maximum likelihood estimates of their
parameters. The density of a future observation Vbl under hypothesis 91

~ (1) 2 2 ~(1)
n

is normal with mean Yo and variance ¢ + Ui’ where y is the predicted
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value of y under hypothesis ei and oi = Var(§§i)),

calculated the information numbers and the criterion D of Box and Hill.

From this were

The information numbers are

2)—1/2.

1(6;,0,,e) = log[(a™00)/ (P01 + [o” + of + GV 503)%1/2(5%4

The choice of the experiment was made by choosing a level for the independ~
ent variable from the set 0,1/4,2/4,...,15/4,16/4 at each stage; this

(1) and };(j)

affects the information numbers through the predicted values y
and their variances. To use procedure A, information numbers were
calculated assuming that the hypothesis currently with highest likelihood
is the true state of nature, and assembling a 4Xx17 payoff matrix. Since
it was deemed impossible to compute the Experimenter's maximin strategy
analytically, linear programming methods were used at each stage to solve
the matrix game and compute the strategy. Parameters in each of the
models were re-estimated by least squares after each stage. The data
were generated by adding normal (0,1) pseudorandom numbers to the model

of hypothesis 65, the exponential model, with 651 =1 and 8., = .75. In

52
the first set of experiments reported below in Table 6 we took a
preliminary sample of five observations at x = 0, 1, 2, 3, 4 to estimate
the parameters in the model. One hundred simulations were run for each
row of the table. Since there were a relatively large number of errors,
the results for runs which rejected the true hypothesis were analyzed
separately. One modification of both procedures that was tried was to
reject any hypothesis or model as soon as its 1ikeli£ood relative to that
of the hypothesis of ® was less than 10—4. Experiments which used this

modification are indicated in the third column of the table.
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Table 6. Discrimination of an Exponential with Five Initial Observationmns

Runs accepting 95 Runs rejectiug 95
Drop poor _ Std.|Range - Std. | Range
Procedure|lErrors| models? c N Dev.|of N N Dev.{of N
A 24 Yes 1/99 5.96%.48|4.15| 2-20{|4.92+ ,51}2.50| 2-11

Box~-Hill|] 15 Yes 1/99 5.00£.29{2.71} 2-15}4.93x .5912.28} 2~9
A 29 No 1/99 6.51+.36|3.04] 1-15)|5.45+ .48{2.60f 2~11

Box-Hilljl 15 No 1/99 4.74x.2412.25 2-13 || 4.40+ .40]1.55| 2-7
A 17 Yes 1/9999{11.29+.67/6.12| 3-411{9.53+ .90{3.73] 5-18
Box~-Hill 9 Yes 1/9999) 7.96+.44{4.24) 3-26 |/ 8.33+ .85{2.55] 4-13
A 19 No 1/9999] 9.93%£.59|5.33| 3-30 (| 7.84%1.05/4.60] 2-22
Box~-Hill|l 15 No 1/9999| 7.11%.38|3.47} 3-24(16.20% .66} 2.54| 3-11

The most striking feature of this table is that the proportion of errors or
rejections of the exponential model is, unlike the first two examples, not
approximately equal to the likelihood ratio criterion c¢. (In an earlier

unreported calculation, with hypothesis 6_ omitted and data generated from

5
hypothesis 83, neither procedure made any errorxs in 100 simulations.)
Thus the ability to distinguish an exponential from quadratic polynomials
provides a severe test for these two procedures. A second experiment was
run in which the initial sample was 20 observations, obtained by
replicating the design x = 0, 1, 2, 3, 4 four times.
These two tables yield the following conclusions about this example:

a. The Box-Hill procedure‘performs consistently better than
Chernoff's procedure A in error rate, ASN, and range of N.

b. As expected, increasing the size of the initial "non~
designed" sample decreases the error rate (but prohibiting termination of

the experiment before twenty observations had been taken would also

accomplish this).
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Table 7. Discrimination of an Exponential with Twenty Initial Observatioms

. Runs accepting 65 Runs rejecting 85
Drop poor - Std. |Range - Std. |Range
Procedure|lErrors | models? c N Dev. jof N N Dev. iof N
A 5 Yes |1/99 | 1.58t.28[2.72| 0-21 || 2.60%.51(1.14| 1-4
Box-Hill|} 3 Yes 1/99 1.61+.21/2.07| 0-10 || 2.67£.33] .58] 2-3
A 7 No 1/99 1.76%£.2212.09| 0s14 || 2.14%.40(1.07| 1-4
Box~-Hillf| 5 No 1/99 1.67+,19(1.88| 0-9 3.4 £,8111.81] 1-6
A 3 Yes 1/9999| 3.80+.403.90| 1-23 || 6.0%1.53|2.64{ 3-8

Box-Hill|] O Yes 1/9999| 2.77+.222.22| 0-12 - - -
A 8 No 1/9999| 3.92+.43}4.14 | 1~21 || 4.252.56(1.58| 2-6
Box~Hilljl 2 No 1/9999| 2,90+,22}2.13| 0~13 || 6.0+2.0 |2.83| 4-8

c. Dropping out poor models has a beneficial effect on the ASN
for runs accepting 95, while it seems to increase the maximum of N for
these runs. It has a beneficial effect on the error rate.

d. With five initial observations, runs rejegting 65 have a

higher ASN; with twenty initial observations, the situation is reversed.

3. Conclusgion

Two procedures for sequentially designing experiments to select the
correct model or state of nature have been compared. Chérnoff's procedure
A is asymptotically optimal for experiments with sufficiently small costs
of experimentation, but as we have seen this assumption may not be
satisfied in practical problems involving even large samples. In some
cases it is possible to modify procedure A to achieve much more efficlent

"large c¢" performance without affecting the maximin character of the strategy.
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However unless the maximin procedure can be computed analytically for a
given problem, the maximin procedure involves difficult and time-consuming
computations.

The Box-Hill procedure, on the other hand, performs well on these
examples probably because it avoids over-committing to a single strategy
until one hypothesis is clearly favored. However, it has no known optimal
properties and can perform poorly‘as in Case II of Example 1. Its good
performance on other problems suggests that future progress in this area
depends on the development of procedures that use initial samples to dis-
cover the most promising hypotheses and then make the transition to some
type of maximin procedure. This idea is like that of Kiefer and Sachs [6],
who prove asymptotic optimality for design procedures which take an
initial sample to discover the state of nature and then design one final
large sequential experiment. The size of the initial sample is specified
to tend to infinity in such a way that its proportion of the total
sample tends to zero. However little is known about how to design this
preliminary sample efficiently. Results have been obtained for simple
special cases, but not without difficulty. Also, Lorden [7] has obtained
bounds on the increase relative to Bayes tests in risk (averaged over the
prior probabilities of the hypotheses) of some asymptotically optimal
sequential tests so that one can compute the loss in effiéiency involved in

designing experiments optimal for c*0, when in fact c is not too small.
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